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1. Introduction. Predictor-corrector algorithms are often preferred over algo- 
rithms of the Runge-Kutta type for the numerical solution of ordinary differential 
equations, since the former may involve fewer derivative evaluations per forward 
step. As commonly implemented, forward values of the dependent variables are 
extrapolated by an open formula (the predictor formula) followed by an evalua- 
tion of the derivative expressions corresponding to the extrapolated values. This 
is followed by application of a closed formula (the corrector formula) to obtain 
new estimates of the dependent variables, and then a final evaluation of the de- 
rivative expressions is made corresponding to these new estimates. This step may 
be applied an arbitrary number of times, leading to a class of algorithms that may 
be denoted by PE(CE)n, where n represents the number of applications of the cor- 
rector. The corrector may be iterated many times, but most commonly it is only 
applied once, since the improvement in truncation error through additional appli- 
cations of the corrector is usually negligible. 

A fourth-order PECE algorithm requires two derivative evaluations for each 
forward step, while a fourth-order Runge-Kutta algorithm requires four evalua- 
tions. Since the evaluation of derivatives typically dominates the total computa- 
tion time in computer applications, this is considered a strong argument in favor 
of the use of predictor-corrector algorithms even though they require the storage 
of back values for the dependent variables and/or their derivatives, as well as re- 
quiring more involved procedures for interval modification. Proponents of Runge- 
Kutta methods often argue that these algorithms are "stable," while predictor- 
corrector methods may be "unstable" in varying degrees. Runge-Kutta methods, 
however, do have limits on their ranges of stability, while many predictor-corrector 
algorithms have regions of stability that compare favorably. The stability prop- 
erties of predictor-corrector algorithms have been studied by a number of authors. 
including Chase [1], Brown et al. [2], and Krogh [3]. In addition, Crane and Klop- 
fenstein [4] have attempted to synthesize a fourth-order PECE algorithm having 
optimal stability properties, and have made comparisons with fourth-order Runge-- 
Kutta methods. While judgments must be made that are difficult to quantize, 
there is much to be said in favor of using PECE algorithms in general-purpose 
algorithms for the solution of ordinary differential equations. 

More recently, it has been suggested that an even further saving in derivative 
evaluations could be obtained by eliminating the final derivative evaluation in 
PE(CE)n algorithms, thus obtaining a class of algorithms that may be denoted by- 
P(EC)n, [5]. For n = 1, this results in a PEC algorithm requiring only one deriva- 
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tive evaluation per forward step. While this is attractive from the standpoint of 
computation time, it may result in a substantial loss in stability. An experimental 
investigation by Hull and Creemer [6], confirmed by more recent studies of the 
characteristic equations [2], [3], has shown that when the fourth-order Adams- 
Bashforth predictor is used with the fourth-order Adams-Moulton corrector in a 
PEC algorithm, the stable range is so reduced that the algorithm is virtually 
useless. 

It is the object of the present work to explore the nature of the stability limita- 
tion for PEC algorithms. By employing methods previously used for PECE algo- 
rithms [4], an attempt is made to synthesize a predictor, for use with the fourth- 
order Adams-Moulton corrector, having optimal stability properties when im- 
plemented in a PEC mode. It will be seen that while substantial improvements 
can be made in the size of the stable region, the resulting algorithm must still be 
regarded as marginal when compared with existing PECE and Runge-Kutta 
algorithms. 

2. The General Fourth-Order PEC Algorithm. The general PEC algorithm 
considered here for the numerical solution of 

(2.1) y= f(x, y), y(a) = yo, 

may be stated as 

(2.2) pn+i = alyn + bly'n-1 + ClYn-2 + diyn-3 + h(eipn' + flp'l + g1pn-2 + kipL-3), 

yn+i = a2yn + b2Yn-1 + C2Yn-2 + h(d2p'+l + e2pn' +f2p'_l + g2pn'-2)), 

where pn' = f(xn, pn), xn = a + nh, and appropriate starting values including 
y(a) = yo must be obtained by other means. We shall restrict our attention here 
to algorithms for which the predictor and corrector formulas are independently of 
fourth order, since this results in a truncation error for the combined algorithm 
that is identical to that for the corrector alone to first order [4]. This leaves three 
parameters in the predictor formula and two in the corrector that are available 
for improvement of numerical stability characteristics. These are arbitrarily se- 
lected to be di, el, ki, d2 and e2. The relations expressing the remaining coefficients 
are given in [4]. 

There is much to be said in favor of specializing to the Adams-Moulton cor- 
rector at the outset. One is assured of some nonvanishing region of relative stabil- 
ity. Also, since the present study is directed at exploring the nature of the limita- 
tions of PEC algorithms, there is a good basis for comparison with results previ- 
ously obtained [2], [6]. Specialization to the Adams-Moulton corrector fixes d2 and 
e2 as well as the rest of the corrector coefficients. The coefficients di, el, and ki, 
henceforth referred to as simply d, e, and k, remain available for optimization 
purposes. 

Therefore, the algorithm we will be concerned with is 

(2.3) pn+l = ayn + byn,- + Cyn-2 + dyn-a + h(epn' + fpn-l + 9pn-2 + kpn_3) 

yn+l = yn + (h/24) (9pn+i + 19pn' - 5pn-1 + Pn-2), 

with 
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a = 9 - d - 3e + 3k, 
b = 9 - 9d + 24k, 
c = -17 + 9d + 3e - 27k, 
f = -18 + 6d + 4e - 17k, 
g = -6 + 6d + e - 14k. 

The characteristic equation corresponding to (2.3) may be found in the usual way 
[1] and is given by 

(2.4) P7+ q6pS + q5p5 + q4p4 + q3p3 + q2p2 + qlp+qO = 

with 

q6 = -1 + (h/8)(-27 + 3d + e - 9k), 
q5 = (h/24)(180 - 44d - 15e + 135k) , 
q4 = (h/24) (- 261 + 85d + 30e - 27k), 
q3 = (hi/24)(215 - 80d - 30e + 27k), 
q2 = (hi/24)(-94 + 35d + 15e - 135k), 
q, = (h/24)(17 - 4d - 3e + 27k), 
qo = (h/24)(- d), 

and i = h(Wf/ly). 
This characteristic polynomial is of seventh degree in p, but is linear in h, 

corresponding to the single derivative evaluation performed for each step of the 
algorithm. 
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FIGURE 1. I~il vs (-/) for Adams-Bashforth/Adams-Moulton as PEC algorithm. 

3. Numerical Stability Improvement. In order to improve the stability charac- 
teristics, we take the Adams-Bashforth/Adams-MNIoulton fourth-order algorithm as 
a starting point, i.e., (d, e, k) = (0, 55/24, -3/8). Fig. 1 exhibits the root loci of 
(2.4) as a function of real h, and is essentially a duplication of Fig. 1 in Brown 
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FIGURE 2. Region of stability in complex h plane for Adams-Bashforth/Adams-Moulton as 
PEC algorithm. 
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FIGURE 3. IPI vs (-A) for K - M as PEC algorithm. 

et al. [2]. Fig. 2 exhibits the boundary of the region in the complex h plane within 
which all roots of (2.4) are less than or equal to unity in absolute value. The re- 
gion of absolute stability for a single differential equation or system of differential 
equations with real eigenvalues may be observed from Fig. 1. For systems of dif- 
ferential equations with complex eigenvalues, however, Fig. 2 must be consulted 
[4]. Dashed lines in each figure indicate the regions of relative stability for which 
all roots of (2.4) except the principal root (that one most nearly equal to exp~i)) 
are equal to or less than exp(real part of h) in absolute value. 
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FIGURE 4. Region of stability in complex Ji plane for K -AIl as PEG algorithm. 
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FIGURE 5. IP I vs (-1h) for Adams-Bashforth/Adams-Moulton as PECE algorithm. 

For comparison, similar curves are given in Figs. 5 and 6 for the same formulas 
implemented in a PECE algorithm. These curves are plotted to half-scale to allow 
(visually) for the fact that twice as many derivative evaluations are required for 
each forward step. Even allowing for this, it can be seen that the PEC algorithm 
is markedly inferior to the PECE algorithm in stability characteristics. The stable 
region in :Fig. 2 has about one-tenth the area of that in Fig. 6. This legislates 
strongly against the use of the formulas in a PEC algorithm. 
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FIGURE 6. Region of stability in complex h plane for Adams-Bashforth/Adams-Moulton as 
PECE algorithm. 

The process of improving the stability characteristics through synthesis of a 
new predictor formula makes use of the gradient technique described in [4] and 
will not be described in detail here. Some simplifications occur since the character- 
istic polynomial is linear in h, but additional, complications occur because of the 
increased degree in p (seventh degree in place of fourth degree). Briefly, if one 
refers to the limiting value of h on the real plot (Fig. 1) as 7*, the process consists 
of forming 

(3.1) Grad (*) = (jd ' Ad / k j 

in order to determine the direction in parameter space that will decrease T* most 
rapidly. Evaluation of (3.1) requires implicit differentiation and depends on the 
nature of the limiting root (real positive, real negative, or complex pair of unit 
magnitude). One then proceeds in parameter space ((d, e, k)-space) in the negative 
gradient direction with redeterminations of the gradient, as required, until a local 
extremum in P* has been determined. While no assertion can be made that such a 
point represents an absolute extremum, it at least appears plausible that this is 
the best that can be done. 

Applying the above procedure, a local extremum for 7* is found for the pre- 
dictor in the form (2.3) with coefficients 
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a = -0.29, 
b = -15.39, 
c= 12.13, 
d= 4.55, 

(3.2) e = 2.27, 
f= 6.65, 
g= 13.91, 
k= 0.69. 

Since these coefficients satisfy the relations of (2.3), maximum significance is re- 
tained in the error estimator 

(3 3) Ep 
P - Yn 

(3.3) ~~~~~~~18.0274' 
which may be used to monitor the accuracy as an integration is carried forward 
by estimating the truncation error encurred at each step. In- any adjustment of 
the coefficients of (3.2) (e.g., for different number bases) one should ensure that 
the relations of (2.3) are satisfied exactly to retain significance in (3.3). 

The stability characteristics of the PEC algorithm given by (2.3), (3.2) are 
exhibited in Figs. 3 and 4 for real and complex h. It is seen that substantial im- 
provements in the size of the stable region have been obtained. On the real hi axis, 
this PEC algorithm is absolutely stable for -0.781 ?< h _ 0, a range about five 
times that for the Adams-Bashforth/Adams-Moulton PEC algorithm. A respec- 
tably large region for- couml7x- Ir is obtained as- well as reasonable- relative st-ablity- 
characteristics. By and large, however, the stable region still lies within that for 
the Adams-Bashforth/Adams-Moulton PECE algorithm even after discounting the 
fact that only half as many derivative evaluations are required. 

4. Numerical Computations. A number of computer runs were made comparing 
results obtained for first- and second-order linear differential equations using the 
PEC algorithm specified by (2.3), (3.2) with the results obtained using the Adams- 
Bashforth/Adams-Moulton PECE algorithm. These runs verified the character- 
istics exhibited in Figs. 3-6. For smaller Ih, the rounding-error accumulation of the 
PEC algorithm was larger by a factor of two or three than that of, the PECE 
algorithm. This is thought to be due to the relatively large coefficients of the pre- 
dictor (3.2), but was not judged to be a serious defect. 

5. Conclusions. It has been suggested that computation time for predictor- 
corrector algorithms can be shortened by implementing them in a PEC mode, [5]. 
At least one commonly used predictor-corrector formula combination becomes so 
unstable in such an implementation as to be virtually useless [2], [6]. In the pres- 
ent study, we have explored the nature of this limitation of PEC algorithms by 
developing a predictor formula which, when used with the Adams-Moulton fourth- 
order corrector in a PLC algorithm, has improved stability characteristics. The 
size of the stable region for the resulting algorithm is still smaller than those for 
commonly used PECE algorithms. However, the new algorithm may be of interest 
in applications where stability is not a strong limitation. 



564 R. W. KLOPFENSTEIN AND R. S. MILLMAN 

RCA Laboratories 
Princeton, New Jersey 08540 

1. P. E. CHASE, "Stability properties of predictor-corrector methods for ordinary differential 
equations," J. Assoc. Comput. Mach., v. 9, 1962, pp. 457-468. MR 29 #738. 

2. R. R. BROWN, J. D. RILEY & M. M. BENNETT, "Stability properties of Adams-Moulton 
type methods," Math. Comp., v. 19, 1965, pp. 90-96. MR 31 #2829. 

3. F. T. KROGH, "Predictor-corrector methods of high order with improved stability character- 
istics," J. Assoc. Comput. Mach., v. 13, 1966, pp. 374-385. MR 33 #5127. 

4. R. L. CRANE & R. W. KLOPFENSTEIN, "A predictor-corrector algorithm with an increased 
range of absolute stability," J. Assoc. Comput. Mach., v. 12, 1965, pp. 227-241. MR 31 #6378. 

5. M. A. FELDSTEIN & H. J. STETTER, Simplified Predictor-Corrector Methods, Assoc. Comput. 
Mach. National Conference, 1963. 

6. T. E. HULL & A. L. CREEMER, "Efficiency of predictor-corrector procedures," J. Assoc. 
Comput. Mach., v. 10, 1963, pp. 291-301. MR 27 #4367. 


